153 research outputs found

    Physical problem solving: Joint planning with symbolic, geometric, and dynamic constraints

    Get PDF
    In this paper, we present a new task that investigates how people interact with and make judgments about towers of blocks. In Experiment~1, participants in the lab solved a series of problems in which they had to re-configure three blocks from an initial to a final configuration. We recorded whether they used one hand or two hands to do so. In Experiment~2, we asked participants online to judge whether they think the person in the lab used one or two hands. The results revealed a close correspondence between participants' actions in the lab, and the mental simulations of participants online. To explain participants' actions and mental simulations, we develop a model that plans over a symbolic representation of the situation, executes the plan using a geometric solver, and checks the plan's feasibility by taking into account the physical constraints of the scene. Our model explains participants' actions and judgments to a high degree of quantitative accuracy

    One-Shot Learning with a Hierarchical Nonparametric Bayesian Model

    Get PDF
    We develop a hierarchical Bayesian model that learns to learn categories from single training examples. The model transfers acquired knowledge from previously learned categories to a novel category, in the form of a prior over category means and variances. The model discovers how to group categories into meaningful super-categories that express different priors for new classes. Given a single example of a novel category, we can efficiently infer which super-category the novel category belongs to, and thereby estimate not only the new category's mean but also an appropriate similarity metric based on parameters inherited from the super-category. On MNIST and MSR Cambridge image datasets the model learns useful representations of novel categories based on just a single training example, and performs significantly better than simpler hierarchical Bayesian approaches. It can also discover new categories in a completely unsupervised fashion, given just one or a few examples

    Few-Shot Bayesian Imitation Learning with Logical Program Policies

    Full text link
    Humans can learn many novel tasks from a very small number (1--5) of demonstrations, in stark contrast to the data requirements of nearly tabula rasa deep learning methods. We propose an expressive class of policies, a strong but general prior, and a learning algorithm that, together, can learn interesting policies from very few examples. We represent policies as logical combinations of programs drawn from a domain-specific language (DSL), define a prior over policies with a probabilistic grammar, and derive an approximate Bayesian inference algorithm to learn policies from demonstrations. In experiments, we study five strategy games played on a 2D grid with one shared DSL. After a few demonstrations of each game, the inferred policies generalize to new game instances that differ substantially from the demonstrations. Our policy learning is 20--1,000x more data efficient than convolutional and fully convolutional policy learning and many orders of magnitude more computationally efficient than vanilla program induction. We argue that the proposed method is an apt choice for tasks that have scarce training data and feature significant, structured variation between task instances.Comment: AAAI 202

    Inferring the Future by Imagining the Past

    Full text link
    A single panel of a comic book can say a lot: it shows not only where characters currently are, but also where they came from, what their motivations are, and what might happen next. More generally, humans can often infer a complex sequence of past and future events from a *single snapshot image* of an intelligent agent. Building on recent work in cognitive science, we offer a Monte Carlo algorithm for making such inferences. Drawing a connection to Monte Carlo path tracing in computer graphics, we borrow ideas that help us dramatically improve upon prior work in sample efficiency. This allows us to scale to a wide variety of challenging inference problems with only a handful of samples. It also suggests some degree of cognitive plausibility, and indeed we present human subject studies showing that our algorithm matches human intuitions in a variety of domains that previous methods could not scale to
    • …
    corecore